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One of the most significant mechanisms of noise generation in prototype counter- 
rotation propeller systems is the unsteady interaction between the rear row and the 
wake and trailing tip vortices shed by the front row. A crucial part of predicting this 
noise is the determination of the resulting unsteady lift distribution on the rear row ; 
since much of the interaction occurs in the vicinity of the rear-row blade tips, 
however, two-dimensional airfoil response theory cannot be applied exclusively, and 
some account of the presence of the blade tip must be taken. With this in mind, we 
solve the model problem of the unsteady interaction between a convected harmonic 
velocity gust and a quarter-plane, for the case of mean flow Mach number in the 
transonic range. The detailed lift distribution near the leading edge and corner is 
analysed, revealing the complicated nature of the lift singularity at  the corner, and 
allowing the lift distribution throughout a narrow region along the leading edge to 
be determined. A closed-form expression for the practically important acoustically 
weighted lift is derived, which could easily be incorporated into existing noise 
prediction schemes in order to correct the rear-row blade response calculations for 
the presence of the blade tips. The radiation in this quarter-plane problem is also 
considered, and the field is seen to possess two components, one arising from the 
interaction between the gust and the semi-infinite leading edge, and the other from 
the interaction between the gust and the blade corner. The acoustic energy 
associated with this second term, corresponding to the conversion of vortical energy 
into sound by the corner, is considered in detail, and the directivity and parametric 
scaling determined. Our exact solution to this model problem is also used to assess 
the accuracy of a strip-theory approximation, which is seen to be accurate in this 
case over only a restricted range of observer positions. 

1. Introduction 
The development of two-stage, counter-rotation propeller systems (or propfuns) as 

possible powerplants for future passenger aircraft has raised a number of technical 
difficulties, not least of which being the often unacceptably high noise levels 
produced by such systems. One of the most potent mechanisms of sound generation 
is the interaction between the two, closely spaced, blade rows ; the wake and vortex 
structures shed by the front row impinge on the rear row, leading to an unsteady lift 
distribution on the rear row, and thereby producing radiation (termed interaction 
noise). 

The disturbance field produced by the motion of the forward blade row contains 
a number of components ; the potential field of the front-row blades is small, however 
(since propfan blades are typically thin), and it is the wake and tip vortices shed by 
the front-row blades which dominate the interaction with the rear row. Prediction of 
the interaction noise therefore falls into two stages; first, the wake and vorticity 
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distribution shed by the front-row blades must be calculated; and second, the 
response of the rear blade row to its interaction with these disturbances must be 
analysed. The structure of the propfan wake has been investigated experimentally by 
Reynolds (1979), by Sundar & Sullivan (1986) and by Hanson & Patrick (1989), 
whilst experiments on the tip vortex have been reported by Vaczy & McCormick 
(1987) and by Simonich, McCormick & Lavrich (1989); as yet little is known 
quantitatively about either the wake or the tip vortex, although some information 
can be inferred by comparison with the better-underst,ood case of wing theory. The 
structure of the wake and tip vortex will not be the concern of this paper, however, 
and we shall consider only the response of the rear row to some known wake or 
vorticity distribution, which we shall suppose has been predetermined, either by 
computation or experimentally. 

Since the wake and the vorticity distribution are periodic in space and time (given 
the assumed regularity of the front-row blading), we need consider only the 
scattering of a single Fourier component by the rear row ; the radiation produced by 
the interaction with the full wake and tip vortices can then be recovered by summing 
the contributions from each of these harmonic components. As a first approximation 
we will neglect the propeller rotation and work in a blade-fixed frame, in which case 
this single Fourier component corresponds to a harmonic velocity gust convected by 
uniform mean flow. It is clear that, whilst analysis of this rectilinear motion will be 
inappropriate for determining the (far-field) radiation produced by a rotating blade, 
it will yield a good approximation for quantities which are evaluated close to the 
blade surface (in particular for the lift distribution), which are relatively insensitive 
to the fully three-dimensional rotational nature of the propeller flow. Once the lift 
distribution has been calculated in this way, the radiation produced by a rotating 
blade can be estimated using standard radiation integrals for rotating sources (see 
Parry & Crighton 1 9 8 9 ~ ) .  We note here that modern propeller blades possess 
rounded and often highly swept tips, but in this paper we shall only consider (in 
common with the authors listed below) an unswept rectangular blade with sharp 
corners, as a first step in the analysis. 

The problem of calculating the rear-row blade response has therefore been reduced 
to the consideration of the interaction between a harmonic velocity gust and an 
airfoil. The model problem of the scattering of a gust by a blade of finite chord, but 
infinite span, is considered by Amiet (1976) and by Martinez & Widnall (1980) 
(simplified formulae, assuming an infinite blade chord and no spanwise dependence 
in the incident gust, are given by Goldstein 1976). With particular relevance to the 
question of rear-row response to the tip vortex, Amiet (1986) considers the 
interaction between a line vortex and an infinite-span airfoil in subsonic mean flow, 
by adding together the appropriate combination of Fourier coefficients from his 
harmonic gust analysis, whilst Ffowcs Williams & Guo (1988) and Guo (1990) analyse 
the interruption of a constant-velocity core by an infinite-span blade in supersonic 
flow. 

The above results cannot be applied directly to the problem of determining the 
rear-row unsteady lift distribution close to the blade tips, however, since here the 
effect of the blade corners will become significant, and the blade can no longer be 
assumed to possess an infinite span. The effects of the corners are important in 
calculating the response to the front-row wake, since whilst Parry & Crighton 
(1989~)  have proved that the wake response is dominated by a critical radial station 
which lies inboard of the tip, it is often the case that for practical parameter values 
this point closely approaches the blade tip. However, inclusion of the blade corner is 
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crucial for the prediction of tip-vortex interaction noise, since the downwash on the 
rear blade row due to the presence of the tip vortex will be concentrated near the tips 
of the rear blades, given that the blade lengths in propfan systems are typically the 
same in front and rear rows. Solution of model problems concerning the unsteady 
interaction of a gust with a blade corner are therefore required, and some work has 
already been done. The related flutter problem of an oscillating quarter-plane (i.e. a 
plane which is semi-infinite in two perpendicular directions) can be solved exactly for 
supersonic mean flow (see Stewartson 1950 and Miles 1951). No exact solutions for 
subsonic flow have been found, however (due to the complicated nature of the 
upstream interaction of the corner), although an approximate solution is given by 
Martinez & Widnall (1983) (obtained by relaxing one of the boundary conditions), 
and a numerical scheme for determining the unsteady lift distribution on a semi- 
infinite blade is described by Chu & Widnall (1974). None of these results can be 
readily applied for the practically important case of mean flow in the transonic range 
(the blade tips of a propfan operating under cruise conditions will typically be 
moving transonically), however, since they essentially use a form of the small 
perturbation equation which is inappropriate for mean-flow Mach numbers close to 
unity (the transonic limit of the solution of the supersonic form of the small 
disturbance equation does not agree with the genuine linearized transonic solution ; 
see Landahl 1989, p. 26). 

In this paper we shall therefore derive a linearized solution for the interaction 
between a harmonic velocity gust and a quarter-plane in transonic mean flow, and 
consider the case of the gust reduced frequency, SZ, being large (we will take typically 
SZ >, 5 )  ; this corresponds to the situation commonly encountered with propfans. 
Throughout this paper we use the definition of reduced frequency 

D = w c / u ,  
where w is the gust frequency, c is the blade chord and U is the mean flow velocity. 
We apply a method described by Landahl (1989), which allows us to formulate a 
transonic similarity law, whereby the solution to the problem for mean flow Mach 
number, M ,  equal to unity can be related to the solutions for M close to unity. 
Landahl(l989) demonstrates that this procedure is valid for 11 -MI 4 52 ; for a given 
(large) reduced frequency our theory will therefore be valid over a non-trivial range 
of M ,  for M both greater than and less than unity. In  this high-reduced-frequency 
case the effects of the blade trailing edge and hub region will be relatively 
unimportant and can be legitimately neglected in our analysis, justifying our 
representation of the finite chord blade by a quarter-plane. The problem considered 
in this paper represents an extension of the work of Cargill (1987), who dealt with the 
case of M = 1. We note here that whilst the investigation described in this paper has 
primarily been carried out with a view to understanding propfan noise, our model 
problem has application in other areas (for instance to the question of blade-vortex 
interaction on a helicopter, or the gust loading on an aircraft wing), and various parts 
of the analysis presented below have been performed with these situations in mind. 

In $2 the mathematical formulation and derivation of the transonic similarity 
law are described, whilst in $3 the solution of the M = 1 problem is found using 
the Wiener-Hopf technique. Since the main aim of this paper is to determine 
the magnitude of the effects of the presence of the blade corner on the interaction, 
the solution of the corresponding problem for an infinite-span blade is presented in 
Appendix A for comparison. The lift distribution on the quarter-plane is analysed in 
$4;  whilst it  will not prove possible to determine an exact closed-form expression for 
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the detailed surface pressure distribution, asymptotic analysis can be applied for the 
two cases of points on the blade close to the corner, and points close to the leading 
edge but away from the corner. First, the nature of the singularity in the lift a t  the 
corner is revealed, the strength of which is seen to depend on the path along which 
the corner is approached. Second, the first two terms in the expansion of the lift 
distribution close to the leading edge are calculated ; the leading term (representing 
the typical inverse-square-root singularity at  a leading edge) is precisely that found 
for an inhite-span blade, and it is only in the second term (which is finite at the 
leading edge) that the effects of the corner become apparent. The combination of 
these two sets of asymptotic formulae allows us to specify the detailed lift 
distribution throughout a strip of width O(Q-I) along the leading edge (including the 
corner region), and this might well be of some practical interest, since this is precisely 
the part of the blade which is most important in sound generation by either 
propellers or helicopters. The results in this section might also provide a benchmark 
test of the accuracy of the various CFD-based codes currently being envisaged for 
rotor noise prediction. 

In  $5 an explicit closed-form expression for the acoustically weighted lift per unit 
span, which corresponds to the effective lift on the blade for the purpose of noise 
generation, is derived, and the effect of the presence of the corner is seen to appear 
explicitly in this quantity in the form of an error-function factor. Considerable 
simplification of propeller noise prediction is possible by use of the fact that the blade 
number, B, is large is modern systems (typically 7 or 8),  allowing application of 
asymptotic analysis in the limit B+co; see Parry & Crighton (1989b), Peake & 
Crighton (1991) for details of the use of the large-B approximation in determining the 
noise of a single-rotation propeller, and Parry & Crighton ( 1 9 8 9 ~ )  for its use in 
predicting the noise of a counter-rotation propeller. This limit can also be applied in 
our analysis, in which case the acoustically weighted lift on a real, finite-chord blade 
reduces to that on our quarter-plane (determined in $ 5 ) ,  and full details are given in 
Appendix B. The practical importance of the result of $5 is that it provides an 
algebraic correction factor, whereby the effects of the presence of the blade corner 
can be incorporated easily and efficiently into existing propfan noise prediction codes 
which rely on two-dimensional response theory (e.g. Parry & Crighton’s 1989a 
scheme for predicting wake interaction noise). 

In $6 the far-field form of the pressure is calculated for our quarter-plane problem ; 
whilst, as has already been noted, such results cannot be applied to the question of 
propeller noise, they are relevant to the issue of noise generation by the interaction 
between an aircraft wing in rectilinear motion and a gust. The noise is seen to possess 
two components ; one (two-dimensional) contribution arises from the interaction of 
the gust with the semi-infinite leading edge, and corresponds exactly to the field that 
would be produced by an infinite-span blade; whilst the second (fully three- 
dimensional) component is generated purely by the interaction with the blade corner. 
It is this second term which is of the greater interest, since we are concerned here with 
the effects of the presence of the blade corner on the scattering of the gust. The 
conversion of vortical to acoustic energy by the corner interaction can therefore be 
assessed by considering the energy intensity associated with this second term, and 
expressions for the directivity and parametric scaling are derived. 

In  $7 the accuracy of a strip-theory approximation in predicting the radiation in 
our model problem is assessed, and it is seen that the strip theory will only yield an 
accurate result for a restricted range of observer positions. However, our analysis 
does yield a simple algebraic factor, whereby the strip-theory results can be corrected 
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for the presence of the corner; this might be of some practical significance, since more 
complicated gusewing problems (possibly involving mean loading or thickness 
effects) could be completed using strip theory, and the results then corrected for the 
presence of the wing tip using this factor. 

Finally, it  is worth remarking that the material described in this paper builds on 
the foundations laid by Cargill (1987). The new work presented here includes the 
generalization of Cargill's analysis to M =k 1 ($2), the detailed elucidation of the 
structure of the corner singularity and the lift distribution near the leading edge ($4), 
the prediction of the spanwise lift distribution ($5) and the consideration of the 
acoustic intensity of the scattered field ($6 ) .  The Fourier transform and basic 
solution of the equations is given explicitly by Cargill (1987), but presented here in 
$ 3 for completeness, whilst the derivation of expressions for the acoustic pressure 
($6) and the strip-theory approximation ($7) represent extensions of ideas already 
outlined by Cargill. 

2. Mathematical formulation 
We consider a rigid semi-infinite blade, which is symmetric about the plane z = 0, 

has its semi-infinite leading edge aligned along the positive (spanwise) y-axis and its 
side edge aligned along the (chordwise) x-axis; the blade leading corner is at the 
origin ; see figure 1. The blade chord length is c, independent of y, and we will suppose 
that the blade is thin, with the thickness-to-chord ratio E 4 1. The role of c will be 
in the definition of the reduced frequency of the system, and in normalizing the 
coordinates; once this has been done we shall subsequently neglect the effects of the 
blade trailing edge, thereby taking the chord to be effectively infinite. There is a 
uniform mean flow relative to the blade of speed U parallel to the x-axis, where U will 
be close to the quiescent sound speed co of the surrounding medium. A harmonic 
velocity gust, corresponding to a small perturbation to the velocity in the z-direction, 
and representing a component of some incident vorticity distribution, is convected 
from upstream by the mean flow and has frequency w (we consider the case of w large, 
so that the wavelength of the gust is much less than the blade chord). We non- 
dimensionalize the problem by dividing all lengths by the chord c,  velocities by U and 
time by c / U ,  and the velocity downwash on the blade due to the gust then becomes 

Vexp (i52t - i0x - ik, y )  z ,  

where V is the normalized magnitude of the gust, z is a unit vector in the z-direction, 
52 is the reduced frequency (i.e. 52 = cw/U) and k, is the wavenumber of the gust in 
the y-direction (we note that the x wavenumber is precisely 52, since the convected 
gust must have a zero associated pressure). We suppose further that V << 1, so that 
the perturbation, I(, to the mean flow resulting from the interaction between the gust 
and the blade is irrotational, with u = Vrp, and where ~ ( z ,  y, z ,  t )  satisfies the small- 
disturbance equation (see Landahl 1989 for full details) 

(1) 

M is the mean flow Mach number and y is simply the ratio of specific heats of an ideal 
gas (having assumed that the flow is isentropic). The next step (as described by 
Landahl 1989) is to write cp(x,y,z) as the sum of a steady part q51(x, y,z) ,  which is 
symmetric about the z = 0 plane and corresponds to the distortion of the mean flow 
by the blade thickness, and an unsteady part r$Jz, y,z)exp(iQt) generated by 
the unsteady interaction of the blade with the harmonic velocity gust. We consider 

r.1 -w - W ( Y  + 1) TZI VZZ + V U Y  + V Z Z  - M T Z t  -M2Tt, = 0; 

13-2 
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FIQURE 1. The coordinate system. 

the situation in which V Q 8 (i.e. the magnitude of the incident gust is much less than 
the blade thickness) so that the unsteady part of the flow, q5z, can be treated as a 
small perturbation to the steady disturbance, g51, allowing the partial linearization of 
(1)  in the form 

In a naive linearization of (2) one would simply neglect the term containing $lz, 

yielding the usual convected wave equation of linear acoustics, namely 

(3) 

which is the equation considered by Miles (1951) and Stewartson (1950). In the 
transonic regime considered in this paper it is not appropriate to apply (3), however, 
since the transonic solution is not recovered uniformly by applying the limit M+ 1 
in (3) (Landahl 1989, pp. 2&30 demonstrates that in two dimensions the limiting 
value of the solution of (3) as M+ 1 + does not agree with the transonic solution, 
whilst the transonic solution is regained in the limit M+ 1 -). The appropriate 
unsteady transonic linearization of (2) is described by Landahl and in more detail by 
Miles (1954). For a three-dimensional planar body we have that q51z = O(E),  and 
following Miles (1954) we impose the restriction that E Q f$ (which is clearly satisfied 
for our thin blade in a moderate-frequency gust) ; the terms in curly brackets in (2) 
will now be dominated by the unsteady linear term provided that SZ B Il-MI, 
yielding the final fully linearized unsteady disturbance equation 

(4) 
Equation (4) can therefore be applied for combinations of D andM for which 52 
11 -MI, and since propeller noise is typically of high frequency anyway (due to the 
relatively large number of blades in modern systems - see (B l ) ) ,  this will not be a 
significant restriction, and our theory will be applicable to a non-trivial range of 
Mach numbers about M = 1 .  It should also be noted that the standard thin-blade 
approximation of applying the normal velocity boundary condition on the mean 
plane z = 0, rather than on the genuine blade surface, can also be applied for our thin 
blade, and full details are again given in Landahl (1989). It has been implicit in our 
derivation that the solution of (4) is in fact only the first term in a series expansion 
of $,(x, y, z )  ; the term in square brackets in (2) will generate higher-order terms, the 
largest of which is a factor O( 1 -M) smaller than this first term. In our transonic 
regime we can therefore neglect these higher-order terms as small, and consider only 
the solution of (4), which provides the dominant contribution to the unsteady 
transonic flow. 

(1 -F) +zzz + #zyy + $222 - 2iQJfvzz + M 2 Q 2 # z  = 0, 

#zyy + &z - 2iQM2$zz + QZMZq4z = 0. 
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In this paper our primary concern is with the effect of the blade leading edge and 
corner, and in what follows we shall neglect the effects of the trailing edge, thereby 
replacing the finite-chord blade by an infinite quarter-plane lying in the first 
quadrant of the (x, y)-plane; for the large42 values we consider, for which the blade 
chord is much longer than the wavelength of the incident gust and trailing-edge 
effects are small, this will be a good approximation. The system is shown in figure 1. 
Thus, in order to calculate the unsteady disturbance $.Jx, y, z )  we must solve (4) 
subject to 

(i) the total normal velocity on the quarter-plane is zero, i.e. 

&(x, y, 0) + Vexp ( -iQx - ik, y -ey) = 0 for x > 0, y > 0, 

where E > 0 is a small fictitious dissipation which will be set to zero at the end of the 
calculation ; 

(ii) because the unsteady potential is antisymmetric in z ,  and a jump in the 
unsteady pressure can only be supported across the rigid quarter-plane, we have 
$,(x, y, 0) = 0 away from the quadrant x > 0, y > 0;  

(iii) the solution must satisfy a radiation condition, i.e. be composed of outgoing 
waves at infinity. 

Since we shall no longer be concerned with the steady part of the flow, we drop the 
suffix 2 in what follows, and refer to the unsteady potential simply as $(x, y, z ) .  The 
solution of (4) subject to the above boundary conditions, for general values of M in 
the transonic regime, can be related to the M = 1 solution via a transonic similarity 
law (again see Landahl 1989) ; the substitution y = d/M, z = .Z/M reduces (4) to its 
M = 1 form, so that by replacing k, by k,M and dividing $(x, y, z )  by M in boundary 
condition (i) we cast the problem into precisely itsM = 1 form (boundary conditions 
(ii) and (iii) are unaffected by this process). Writing the unsteady potential in a form 
which makes clear its parametric dependence on the flow, we see that 

(5) 
which demonstrates that the potential for general transonic M is simply related to 
the potential for M = 1, once the correct modifications of the y- and z-coordinates 
and the transverse gust wavenumber have been made. We are therefore left to solve 
the problem for M = 1, and then apply our transonic similarity law to find the 
solution for the more general case M =k 1. 

$(x, y, z , Q ,  k,,M) = M-'$(x,My,Mz, Q, k,/M, 11, 

3. Solution of the M = 1 problem 
In this section we shall solve (4) subject to the boundary conditions (i), (ii) and (iii) 

for M = 1, and our method of solution will be the Wiener-Hopf technique; this has 
previously been presented by Cargill ( 1987). Strictly speaking, the Wiener-Hopf 
analysis must be completed by first supposing that the reduced frequency possesses 
a small negative imaginary part, 52,, which is set to zero at the end of the analysis 
(this allows a narrow strip to be defined along the real axis, in which the various 
Fourier transforms are analytic). However, for clarity we shall suppose 52, = 0 from 
the outset; in the present problem this will have no effect on the results. We define 
the double Fourier transform 

m m  

@(kl, k,, 2) = l-m $(x, y, 2) exp (ik, x + ik, Y) dx dy, (6) 

so that transforming (4) yields 
@zz - y2@ = 0, (7) 
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y2(kl, k,) E kt+2Qk,-Q2. 

We will be performing our Wiener-Hopf analysis with respect to the k, transform 
variable, and a key step will be the multiplicative factorization of y(k,, k,); at  this 
point we therefore write y(k,, k,) in the form y(k,, k,) = y+(kl, k,) y-(k,, k,), with 
y*(k,,  k,) analytic and non-zero in the upper and lower halves of the complex k,- 
plane respectively, and find that 

y*(k,, k,) = (k,+i(2Qk,-Q2)~)~. (9) 

The branch cut in the k,-plane is chosen to lie between $Q and infinity in the lower 
half-plane, parallel to the negative imaginary axis (with the square root real and 
positive as k,++co along the real axis); whilst in the k,-plane cuts are chosen 
originating from i(2Qkl - Q 2 ) f  and joining to infinity through the upper and lower 
half-planes respectively (this ensures that the y*(k,, k,) defined in (9) are analytic in 
the correct half-planes) ; y(k,, k,) is again chosen to be real and positive as k,++ 00 

along the real axis. Transforming the normal velocity boundary condition (i) leads 
to 

T I  

where the + superfix on @i(kl,k2,0) indicates that the k, integral has been 
completed over the positive semi-infinite range (i.e. 0 < k, < a); @;(k,, k,,O) is 
analytic in the upper-half of the k,-plane. In  deriving (10) we have used the fact that, 
for this M = 1 case, the quarter-plane exerts no upstream influence, so that $ z ( x ,  y, z )  
vanishes for x < 0. Since $(z, y, z )  is an odd function of z ,  (7) can easily be solved 
to give 

(11) 

where [@(k,, k,, O)]?  is simply the jump in @(kl, k,, 0) across z = 0, and it follows from 
boundary condition (ii) that [@(k,, k,, O)]? is analytic in the upper-half of the complex 
k,-plane. Substituting (1 1) into (10) yields the Wiener-Hopf equation 

@&, k,, 2) = Bsgn (2) [W,, k,, 0)l'exp (-ylzl), 

= E(k,). (12) 

Following the standard Wiener-Hopf procedure (see Noble 1958, pp. 52-58), we now 
note that the left-hand side of (12) is analytic in the upper-half of the complex k,- 
plane, whilst the right-hand side is analytic in the lower half-plane, and that by 
analytic continuation (12) therefore defines a function, E(k,), which is analytic in the 
whole k,-plane. By choosing the least singular solution for $(x, y, z ) ,  it follows that 
E(k,) E 0, yielding an expression for [@(k,, k,, O ) ] ? .  The pressure associated with 
$(x, y, z) ,  denoted p ( x ,  y, z) ,  is found from the usual relation of potential theory (i.e. 
p(x,y,z) = -iQ$-$,J, and it follows that [P(k,, k,,O)]?, the Fourier transform of 
the pressure jump across z = 0, is given by 
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From the antisymmetry of $(x, y, z )  about the plane z = 0, we note that the Fourier 
transform of the surface pressure, denoted P(k,,  k,, 0 ) ,  is precisely $[P(k,, k,, O ) ] ? .  The 
detailed lift distribution on the blade is now found by inverting (13), to give 

In (la), the integration contour in the k,-plane lies below any singularity in the left- 
hand half-plane, and above any in the right-hand half-plane (given our choice of 
branch cuts this means that for k, > &2 the k, contour is the real axis, whilst for 
k, < &2 it is the real axis indented below the branch point at k, = - 12Qk, - Q z l  and 
above the branch point at k, = 12Qk, -Q21)  ; the integration contour in the k,-plane 
is the real axis, indented above any branch points. It is easy to check that this choice 
of contours, together with the branch cuts chosen following (9), yields a solution 
which satisfies the radiation condition, and which vanishes in z < 0. In  deriving (14) 
from (13) the role of the fictitious dissipation, E ,  has been in determining the path of 
the integration contour relative to the various singularities; once this had been 
completed we set E = 0. 

An integral expression for the potential can also be found in the form 

where the k, contour is as before, and the k, contour is now indented above the pole 
at k, = Q. We emphasize that (14) and (15) have been derived for the caseM = 1, and 
application of the transonic similarity law will be postponed until later sections. 

4. The unsteady lift on the blade 
In this section we consider the detailed lift distribution on the quarter-plane 

caused by its unsteady interaction with the gust, and will be concerned only with the 
portion of the blade close to the leading edge; this is the region which is most 
important in sound generation due to the presence of the leading-edge singularity in 
the lift, together with the effects of phase cancellation away from the edge in our 
high-frequency regime. The first step is to simplify (14) by making the substitution 
k, = ki+$2. For y < 0 we close the k, integration contour in the upper half-plane, 
yielding zero lift (since the integrand is analytic in the upper half of the k,-plane), as 
expected. Alternatively, for y > 0 we deform the k, integration contour round the 
branch cut in the lower half-plane (that is, the branch cut originating from k, = 
- i(2Qk$), yielding both a branch-line integral and a residue contribution from the 
pole at k, = k,. The branch line integral can be completed using a standard result 
(Gradshteyn & Ryzhik 1980, p. 338, 3.466(1)), and adding the pole and branch-line 
contributions together we find that 

(16) 
where the error function erf(z) is defined by (Abramowitz & Stegun 1968) 

erf (z) = 5l exp ( - z',) dz'. 
KE 
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Equation (16) is still valid only for M = 1 , and has previously been derived by Cargill 
(1987). 

For x < 0 we close the integration contour in (16) in the upper-half of the ki-plane, 
and since the integrand is analytic here (both k; branch cuts were chosen to lie below 
the real axis) we see that b ( x ,  y, O)]' = 0 for x < 0, again as expected. In what follows 
we therefore consider only x > 0. It will not prove possible to derive a closed-form 
expression for the lift distribution b ( x ,  y, O)]' from the complicated integral in (16), 
but asymptotic analysis can be completed for either x and y small or for x small and 
y held fixed, and will fall into two stages. In  $4.1 below we consider for simplicity 
the case of k, = 0, and study the behaviour of the lift near the corner of the quarter- 
plane; whilst in $4.2 we find the first two terms in the expansion of b ( x ,  y,O)]+, in 
the limit x+O with y non-zero and held fixed (that is, the behaviour of the lift near 
the leading edge but not too close to the corner), this time with k, =k 0. By combining 
the results of $54.1 and 4.2 we are able to specify the lift distribution throughout a 
strip of width O(Q)-l along the blade leading edge; i t  is again emphasized that this 
should be of practical interest, since the leading edge is the most significant region 
of the blade in terms of noise generation by both propeller and helicopter systems. 

4.1. The behaviour of the unsteady lift i n  the neighbourhood of the corner 

For simplicity we set k, = 0 in (16) (so that the incident harmonic gust depends only 
on the chordwise coordinate x), and deform the integration contour from the real k;- 
axis onto the path which traverses the (single) branch cut in the lower half-plane; 
making a further simple transformation, and using the transonic similarity law 
(equation ( 5 ) )  to extend the result to general transonic M yields 

where h = x/(uMzQy2). (18) 

Whilst it has not proved possible to evaluate the integral in (17)  in terms of well- 
known functions, asymptotic analysis can still be completed for h either small or 
large. In  the limit A --f co we find that to leading order the error function in (1  7 )  is 
replaced by its asymptotic form near u = 0 (namely, erf (u) - 2u/& as u+O), and it 
follows that 

Alternatively, when h+O we make the substitution htu = v, and use the fact that 
erf (ha&)  - 1 as h+O, to show that, again to leading order, 

Higher-order terms in (19) and (20) could easily be calculated (indeed, the next term 
in (20) is found in $4.2 below), but have not been included here since they have no 
bearing on the structure of the corner singularity. We can now use (19) and (20) to 
explore the form of the lift distribution near the blade corner, and to facilitate this 
we define polar coordinates in the blade plane, writing x = r cos 0 and y = r sin 0, so 
that h becomes 

coso  1 
2 ~ 2 ~  sin2 o r A =  
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FIQURE 2. A comparison of the asymptotic approximations ((19) and (20)) to [p(z,y,O)]+ as a 
function of 8 at fixed r (solid line), against an exact numerical integration of (17) (0). k, = 0, 
SZ = 5, M = 0.9; and (a)  r = 0.05, (a) r = 0.1. 

In the limit of r + 0, the limiting value of h will depend on the path along which the 
corner is approached; for paths lying in the wide arc for which cos0 = 0 ( 1 )  we see 
that A+ 00 as r+O, so that the asymptotic expression for the lift given in (19) 
must be applied; whilst for paths lying sufficiently close to the leading edge (i.e. for 
cos0 = o(r ) ) ,  we have A+O as r+O, and (20) must be applied. The transition 
between these two regions occurs across the region in which h = O( l ) ,  and we define a 
critical line, 0 = 0,, lying in this transition region, along which the value of h is 
exactly unity ; 0, is given by 

0, = cos-l[ --+( W Q r  1 
16M4Q2r2 +J]. 

In the neighbourhood of 0 = 0, no asymptotic expansion of (17) is possible, since 
here h = O( 1).  In  order to predict the value of k(z,  y, O)]?  for a given (small) value 
of r and varying 0 we therefore evaluate the outer solution by use of (19)  and (20) 
in the ranges 0 < 0 < 0, -6 and 0, + 6 < 0 < i x  respectively, where 6 is a small 
positive constant. As already stated, the inner solution in the narrow range 0, - S < 
0 < 0,+6 cannot be calculated asymptotically and is neglected, but little 
information is thereby lost, and in a practical prediction scheme the two segments of 
the outer solution could be joined by a simple curve-fitting routine. The accuracy of 
our asymptotic approximations is demonstrated in figure 2 by comparison with an 
(exact) numerical integration of (17),  for the parameters 52 = 5 andM = 0.9, and for 
two different values of r ( r  = 0.05, 0 .1 ) .  As can be seen, excellent agreement is 
obtained over most of the angular range 0 < 0 < SK, with only a very narrow region 
round 0, excluded. We note that the second term in (20) is not required to obtain 
good agreement with the numerical results, since in the region 0 > 0,+6 the first 
term in (20) is much bigger than the second for these small values of r .  

Having seen how our asymptotic formulae can be applied in making a practical 
prediction of the lift distribution close to the blade corner, we now go on to consider 
the formal nature of the singularity in the lift at the blade corner. For paths along 
which r-+O with 0 such that both cos0 = O(1) and sin@ = O(1) (i.e. the corner is 
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approached on a path lying not too close to the edges of the quarter-plane), it follows 
from (19) that the pressure jump is singular, with 

b ( x ,  y, o)]’ - r+ as r + 0, 

where the coefficient of r-i is O(1). Further consideration is required for the cases of 
cos 0 or sin 0 small, however. First, for cos 0 4 1 (i.e. the corner is approached along 
a path close to the leading edge) we write cos0 = AV, with A = O(1). When 
0 < a < 1 we still have that h 9 1 near the corner, and (19) is used to demonstrate that 

[p(s, y, O)]t - T - ( ~ + ~ ~ ) / ~  as r+  0. 

For a = 1 we have h = O ( l ) ,  so that the integral in (17) is also O ( l ) ,  and 

@(x, y, O)]! - r-l as r + 0 ; 

the coefficient of r-l is independent of r ,  but as stated above cannot be determined 
explicitly. For a > 1 we see that h 4 1 near the corner, so that (20) must now be used 
to give 

b ( x ,  y, O ) ] !  - r-(a+1)’2 as r+O. 

Second, for sin 0 4 1 (i.e. the corner is approached along a path close to the side edge) 
we write sin0 = BrP, with B = O(1);  we now have h 9 1 near the corner, and again 
applying (19) demonstrates that 

b ( x ,  y, O)]! - r(6p-1)/4 as r+  0. 

It is therefore clear that the nature of the singularity in b(z, y, O ) ] !  depends crucially 
on the path along which the corner is approached. For paths lying within the broad 
arc away from the edges 0 = 0 and 0 = 4~ the pressure is singular like r-f at the 
corner. However, for paths sufficiently close to the leading edge 0 = in the pressure 
is more singular than r d ,  and the strength of this algebraic singularity can be made 
arbitrarily large by choosing paths closer and closer to the leading edge (i.e. by 
increasing a). Close to the side edge 0 = 0, however, the pressure singularity is 
weaker than r-f,  and indeed for paths sufficiently close to the side edge the pressure 
is not singular at the corner a t  all, but tends to zero (i.e. by choosing p > 6). 

It is easy to see that the right-hand side of (20) is exactly equal to the pressure 
distribution on an infinite-span blade (equation (A 4)), which means that for 0 > 0, 
(which is only a narrow region for very small r )  the leading term in b ( x ,  y, O)]!  is 
unaffected by the presence of the blade corner. We therefore see that the three- 
dimensional effects due to the presence of the blade corner and side edge are more 
important in the region 0 < O,, which is hardly surprising since in this region a 
transition must be made between the singular value of the pressure at the leading 
edge and its zero value at the side edge. Useful scaling laws for the dependence of the 
corner loading on the various operating parameters can be derived, and we note in 
particular from (19) and (20) that 

implying that, near the corner b ( x ,  y, O)]? will decrease as either M or 52 is increased. 
The generalization of this analysis to include k ,  =I= 0 could be accomplished in much 

the same way, but would have little bearing on the overall structure of b ( x ,  y,O)]! 
(the strength of the singularity for the various paths would be unaltered, and k, 
would only appear in the coefficients), but this will not be attempted here. 
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4.2. The behaviour of the unsteady lift distribution in the neighbourhood of the 
leading edge 

We now analyse the behaviour of the lift distribution close to the leading edge of the 
quarter-plane, considering the more general situation of the gust possessing a non- 
zero transverse wavenumber (i.e. k, + 0 ) ,  and rewrite (16) in the form 

exp ( - iu) 
exp ( - !$2x - ik, y ) 

V 
(252x)iMn k(x ,  Y, 011: = - 

x erf [al(a2 +iu;);exp (-4in)l du, (24) 

having extended (16) to include M + 1 as before, and where the parameters a, and 
a2 are defined by 

a, = (252W/Z)f y; (25) 

and a2 = (x/252); k,/M. (26) 

The interpretation of the square roots in (24) follows from the definitions of the 
branch cuts in the original k,- and k2-planes. 

We will determine the first two terms in the expansion of P(z, y, O)]?  as z -+ 0 with 
y held fixed (which is equivalent to the limits a, -j. co , a2 + 0, with a: u2 constant). It 
is clear that these results will then give a good approximation to the lift distribution 
for the positions on the blade such that either 5 is small and y = O ( l ) ,  or such that 
both x and y are small with x 6 y;; these correspond to positions close to the leading 
edge but away from the corner and to positions close to the corner but in the region 
0 > 0, + S respectively. We now rewrite (24) in the form 

exp ( - iu) 
exp ( - $52x - ik, y) du 

V 
(2522);Mn 

k(z,  y, 0)1? = - 

exp ( - iu) 
exp ( - &iQx - ik, y) erfc [a,(a,+iu;);exp (-$in)] du, (27) 

V 
(2522); Mn 

+ 
where the complementary error function erfc ( 2 )  is defined by 

erfc(z) = 1-erf(z). 

The leading term in the expansion of b(x ,  y, O)]' is given by evaluating the first term 
in (27), and corresponds exactly to the equivalent result for the infinite-span blade 
found in Appendix A, which we denote as kZd(z, y, O)]?. To determine the next term 
we must therefore expand the second integral in (27), and since a, + 00 we apply the 
large-argument form of erfc ( z ) ,  i.e. 

exp ( - 2) 
76 2 

erfc ( 2 )  - as z + c o ,  

together with the simple transformation v = u+ai,  so that the second term in (27) 
becomes 

exp ( - @2x + iin - ik, y + ia? a2 + iai) 
V 

Mnf( 252x)i a, 

exp ( - iw) 
1exp(-aa,2(v-aa,2);)dv. (29) 



390 A? Peake 

-0.6 1 
0 0.1 0.2 

X 

FIQURE 3. Plot of the ratio of the second and first terms in the asymptotic expansion of Ip(z, y, O ) ] :  
for small 2, with y fixed (equation (32)). k, = 1, SZ = 5 ,  M = 0.9 and y = 0.15, 0.25, 0.4. 

We now take the limit of a,+O in the integral in (29), and deform the integration 
path around the branch cut (which joins v =  0 to infinity along the negative 
imaginary axis), so that after some simplification the integral in (29) becomes 

4exp ( -@) {low exp ( -z4 -a: exp [-+nil z 2 )  dz- exp ( - z4--a:exp [-$ti] 2') dz . 

(30) 
I low 

Application of the standard result (Gradshteyn & Ryzhik 1980, p. 307, 3.323(3)) 

exp( -z4-u;exp[-$ni]z2)dz = $I$( -Qiat)a,exp(-Qni)exp(-Qia:), (31) 1: 
followed by taking the limit a, + 00 and applying a standard result for the large- 
argument form of Bessel functions of fractional order (Abramowitz & Stegun 1968, 
p. 378), then yields a final expression for the second term in the asymptotic 
expansion of @(x, y, O)]', and we have that 

exp ( -$iOx - ik, y + ia; a2 + iu;) + O(xi). (32) 

We therefore see that the effects of the corner and side edge arise only in the second 
(and higher) terms in the expansion of the lift distribution. The ratio of this second 
term to the first is plotted in figure 3, and it is clear that the second term can become 
significant, even for the relativity small values of x considered here. The magnitude 
of the second term decreases with increasing y, indicating that for small x the effects 
of the corner becomes negligible at sufficiently large distance along the blade span. 
In fact, we can prove that this is the case for all x by consideration of (24) ; in the limit 
of y+ 00, with x held fixed, the error function factor in (24) can be replaced by its 
large-argument value of unity, and the subsequent integral then evaluated to give 

2v 
Ip(X3 Y, - IpZd(X, Y? 0)l: +@,Ys2 
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FIGURE 4. The structure of the unsteady lift distribution ; the hatched region corresponds to a 
strip of width O(Q)-l along the blade leading edge. 

exactly the two-dimensional result found in Appendix A. Sufficiently far from the 
side edge our quarter-plane problem therefore reduces precisely to consideration of 
an infinite-span blade. 

4.3. The lift distribution throughout a strip of width O(L?)-l 
Following the analysis of sCj4.1 and 4.2 above, the general structure of the unsteady 
lift distribution is described in figure 4. We consider the strip bounded by the leading 
edge on one side, and the parallel line through the points A and B on the other (i.e. 
the hatched region in the figure) ; the distance between the corner, 0, and A is O(Q)-l. 
The line 0 = 0, (i.e. y2 = x / W Q ,  from (18)) intersects this second line at  B, and it is 
clear that the distance OC is also O(L?)-'. In  the region OAB we have that b ( x ,  y, O)]?  
is given by (20), whilst in the remainder of the shaded region it is given by (32). In 
the region OBC, but close to the corner, the second term in (32) will be very much 
smaller than the first (since here we have that x is very small, so that the leading-edge 
singularity contained in the first term dominates the finite second term), and could 
be neglected; this is the reason why the asymptotic results plotted in figure 2 (which 
were in part based on (20), which contains only the first term of (32)) agreed closely 
with the numerical results. In contrast, the results plotted in figure 3 correspond to 
positions on the blade span lying in the hatched region of figure 4 but in the 
neighbourhood of, or above, the line BC, and it is clear that here this second term 
cannot be neglected. That our asymptotic results from ss4.1 and 4.2 should be valid 
in these various regions follows from the fact that 52-l is a small parameter, so that 
A and B are indeed close to the corner and side edge, allowing application of our 
small-r and small-x asymptotic limits. Matching of the expressions across the 
boundary OB, in the strict sense of matched asymptotic theory, cannot be 
completed, since no asymptotic analysis of (17) can be performed for the parameter 

In summary, we have therefore constructed asymptotic expressions for the lift 
distribution throughout a strip of width O(Q)-l along the leading edge, and it is again 
emphasized that it is this portion of the blade which is most significant in terms of 
noise generation; what we have essentially done is to specify the equivalent dipole 

h = O(1). 
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distribution along the leading edge. A further possible practical application of these 
results might be as a means of testing the accuracy of the CFD-type codes currently 
being developed for the prediction of propeller or helicopter blade-vortex interaction 
noise. 

5. The acoustically weighted lift 
As was seen in the previous section, it has not proved possible to evaluate the 

integral representation of the detailed lift distribution (e.g. (17)) in terms of well- 
known functions, and progress could only be made by application of asymptotic 
analysis close to the leading edge and corner of the blade. However, an exact closed- 
form expression for the chordwise integral of the lift can be derived, and in this 
section we therefore consider the acoustically weighted lift for the quarter-plane, 
9 ( y , K ) ,  defined by 

64(y ,K)  = b ( x ,  y, O ) ] :  exp ( -  X x )  dz. som (33) 

This quantity will be significant in the prediction of propfan noise; essentially 
Y ( y , K )  is the effective unsteady lift which acts to produce sound, where K is a 
wavenumber which accounts for retarded-time differences along the blade chord and 
depends on the various propfan operating parameters. Of course, the acoustically 
weighted lift on a real propeller blade (denoted Y ( y , K )  and given in (B 2)) would be 
somewhat different from (33), due to the presence of the trailing edge; for a real blade 
the range of integration in the acoustically weighted lift would be between 0 and 1, 
and b ( x ,  y, O)]?  would include the effects of the trailing edge. However, (33) can still 
be applied in practice, thanks to the fact that the blade number, B, is large in modern 
systems, permitting application of the asymptotic limit B + 00 (this has already 
been used extensively in propfan noise prediction - see Peake & Crighton 1991). We 
have that K cc B (equation (B 3)), so that in the large-blade-number limit K-t  co, 
allowing the trailing edge to be neglected and the chordwise integration to be 
extended to infinity. In this limit the acoustically weighted lift on a real propeller 
blade therefore approximates to the acoustically weighted lift on our quarter-plane 
(i.e. Y ( y , K )  - A?(y,K)), and full details are given in Appendix B. When K = 0, the 
quantity L?(y,K) reduces to the ordinary lift per unit span. 

We write 9 ( y , K )  in terms of the Fourier inversion integral of b ( x ,  y, O ) ] ? ,  so that 

the fact that b ( x ,  y, O)]?  vanishes upstream of the leading edge has allowed the 
lower limit of integration in (33) to be replaced by -co. Exchanging the orders 
of integration in (34), evaluating the z-integral as 2x8(k1 + K ) ,  substituting for 
[P(lcl, E, ,  O ) ] ?  from (13) and completing the resulting integral in much the same way 
as in the derivation of (16) leads to an expression for Y ( y , K )  in the case M = 1, 
and by application of the transonic similarity law ( 5 )  we find that for general values of 
M in the transonic range 

exp ( - iyk,) erf [yiexp (;in) (M(Q2 + 2S1K)f- k,)f]. 
2i V 

64p(y7 K ,  = ( p Q 2  - + W Q K ) ;  
(35) 
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FIGURE 5. A plot of the real part of the acoustically weighted lift for the quarter-plane, Y ( y , K )  
(solid line) and of an infinite-span blade, 5!&(y,K) (dashed line) against y ;  k, = 1, a = 5 ,  
M = 0.9 and K = 0. 

In  appendix A the corresponding result for an infinite-span (two-dimensional) blade 
(denoted gd (y ,K) )  is shown to correspond exactly to the expression given in (35), but 
without the error-function factor. We therefore see that the effects of the corner on 
2 ( y , K )  occur only in the error function; the magnitude of these effects is given by 
the so-called three-dimensional flow correction coeflicient, C (Landahl 1989), defined by 

[2(Y)-%d(Y)l/%d(y), 
which becomes 

c = -edc [yiexp (+in) ( ~ ( ~ 2 2 + 2 ~ 2 ~ ) i - k , ) ; ] .  (36) 

We note that C approaches zero (i.e. the two-dimensional result for the lift 
distribution is regained) in the limit of the argument of the complementary error 
function in (36) approaching infinity, and this has a number of implications. First, 
we have that far from the corner (i.e. as y-f 00) the effects of the corner become 
negligible, in agreement with the result of the previous section. Second, for very large 
reduced frequencies, or large values of the wavenumber K ,  the acoustically weighted 
lift distribution is close to the two-dimensional, infinite-span result along most of the 
blade span, apart from very close to the side edge (i.e. y z 0). Third, we see that the 
level of the corner effect decreases with increasing M .  These trends with B and M are 
in agreement with the results found for the scaling of the lift distribution near the 
corner (equation (23)). In  figure 5 ,  2(y,O) and gd(y ,O)  are plotted against y for 
M = 0.9, 52 = 5; the two curves are seen to agree for distances from the corner of 
about 1.5 chord lengths or greater, but vary markedly closer to the corner. Since 
modern propellers will have relatively long blade chords (typically 0.3 of a blade 
radius), and since, as argued in the introduction, the corner region is the most 
important portion of the rear-row blades for noise generation, it can be seen from 
figure 5 that the two-dimensional theory presented in appendix A will not be an 
adequate basis for the prediction of wake or tip-vortex interaction noise. The three- 
dimensional flow correction coefficient is plotted in figure 6 for M = 0.9, 1 ,  1 .1 ,  
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FIQURE 6. A plot of the absolute value of the three-dimensional flow correction coefficient, C, 
against y, for k,= 1 ,  Q = 5 a n d  forM=0.9, 1 ,  1 .1 .  

demonstrating the reduction in the effect of the corner as M is increased within the 
transonic range. 

In summary, we have therefore presented in this section a simple algebraic result 
for C ,  which can be easily incorporated into existing propeller noise prediction 
schemes in order to correct two-dimensional response calculations for the presence of 
the blade corner. 

6. The radiation 
In the previous two sections we considered the lift distribution on the quarter- 

plane, and the results obtained had a number of practical applications, either in the 
direct prediction of the gust loading on a rectangular surface in rectilinear motion 
(e.g. a wing), or in determining the radiation produced by the unsteady loading on 
a rotating propfan blade, using the method outlined in Appendix B. In this section 
we now consider the far-field form of the unsteady pressure generated by the 
interaction between the gust and the quarter-plane, and whilst, as has already been 
argued, these results will not be applicable in the propfan or helicopter cases (since 
far from a rotating blade the approximation of rectilinear motion becomes invalid), 
they will be applicable to the question of noise generation by a gust-wing interaction. 
The radiation has previously been considered by Cargill (1987). 

We start from the exact double-integral expression 

which is simply derived by applying the similarity law ( 5 )  to (15) and using the usual 
potential theory relation between the pressure and the potential. In (37), 1x1 is the 
observer-corner separation, and the phase function 1x1 @(kl, k2) is defined by 

IXl@(kl,kZ) = ~ , ~ + ~ ~ , y - i M y ( ~ , , ~ z ) l ~ l .  (38) 
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Since we shall subsequently be applying asymptotic analysis in the limit 1x1 + co, we 
first note that the argument of the exponential in (37) possesses a single stationary 
phase point, i.e. the point k, = f, ,  k, = f ,  which satisfies 

and we find that 

and y ( f , ,  f , )  = iMlzl  a /x .  (40) 

It is easy to check that the values of ~ ( k , ,  f , )  given in (40) lies on the correct Riemann 
sheet. A further step in the analysis will be the calculation of the determinant of the 
Hessian matrix, &‘(k,, k,), of second partial derivatives of $(k,, k,), i.e. 

and we find that 
det &‘(El, f , )  = X ~ / ( Z ~ M W  1xI2), 

and that the signature of &‘(f,,f,) is -2. 
For x < 0 the k, integral is completed by closing the k, contour in the upper half- 

plane, and since the integrand is analytic there we have that p(x, y, z )  = 0 for x < 0. 
In order to find the far-field form of p(x, y, z )  in x > 0 we now take the limit 1x1 + 00, 

and note that in this limit there will be a dominant contribution to the integral in (37) 
from the neighbourhood of the stationary phase point k, = f , ,  k, = i,. From (40) we 
see that y(k,, k,) is purely imaginary in the neighbourhood of the stationary phase 
point, and that the phase function in (38) is therefore in exactly the right form for 
application of the method of stationary phase for double integrals (that is to say, the 
phase function is equal to the large parameter multiplied by a real number), as 
described by Jones (1966). As part of this method, the integration contours in both 
the k, and k,-planes must be deformed from the real axis onto straight lines through 
k, = k, and k, = f ,  respectively, with both of these lines at an angle of in to 
the respective real axes, and as a result of this deformation there is therefore 
the possibility of a contribution to p(x, y, z )  from the pole at k, = k,/M, in addition to 
the contribution from the stationary phase point. The contribution to p(x, y, z )  from 
this pole (which we shall denote p,,(x, y, z ) ,  for reasons which will become clear) arises 
only if the pole is to the left of the point k, = f ,  in the k,-plane, i.e. only if f ,  > k,/M, 
and is found by application of the residue theorem to the k, integral in (37), leaving 
a single integral in the k,-plane, which can easily be evaluated to give 

(42) 

where H(y) is the unit step function. The expression given in (42) is seen to 
correspond to a two-dimensional radiation field, since it possesses an inverse square 
root fall-off with distance and its directivity is independent of the transverse 
coordinate y. Indeed, putting aside the step function factor, (42) is exactly equal to 
the radiation produced by an infinite-span blade (equation (A 7)) ,  and we therefore 
see that p,d(x, y, z )  is generated by the interaction of the gust with the leading edge, 
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FIGURE 7 .  Definition of the spherical polar coordinates used in determining the far-field 
radiation. 

and that the presence of pzd(x, y, z )  in our problem is a result of the quarter-plane 
being infinite in the positive y-direction. It follows from (39) that this two- 
dimedsional field is 'cut on' across the critical plane y = x tan A / W ,  where A is the 
gust phase angle, defined by tan A = k,/O. In the case of M = 1 the angle between 
this critical plane and the leading edge (i.e. & - A )  is the same as the angle between 
the gust phase fronts and the leading edge, and this is exactly as one might expect, 
since p,,(x, y, z )  arises purely from the interaction between the gust and the leading 
edge (and not the corner or side edge, the effects of which are restricted to the term 
p,,(x, y, z )  found below). ForM + 1 in the transonic range we see that the angle of this 
critical plane to the leading edge is modified - the extent of the region over which 
p,,(x, y, 0) is cut on increases as M is increased. 

The contribution to p(x, y, x )  from the stationary phase point (which we denote as 
p,,(x, y, z ) )  is now given by the standard stationary-phase formula (Jones 1966, p. 
345), and defining spherical polar coordinates centred on the blade corner and given 
by x = 1x1 cos 8, y = 1x1 sin 6' cos x and z = 1x1 sin 6' sin x (see figure 7) ,  we find that 

Equation (43) represents a fully three-dimensional radiation field, since it possesses 
an 1xl-l fall-off with distance, and a directivity which depends on both polar angles 
6' and x. We note that p,,(x, y, z )  is in fact singular for observer positions satisfying 
M2Q sin 6' cosx = k ,  cos 6' (i.e. on the critical plane along which the pole contribution 
p,,(x, y, z )  is cut on). This non-uniformity in our asymptotic expansion is due to the 
coincidence of the stationary phase point at  k, = &, and the pole a t  k,  = k,; a 
uniform expansion of the stationary phase contribution in terms of a complex error 
function is of course possible, and combines with the discontinuous pZd(x, y, z )  to yield 
a total pressure (i.e. pzd(x, y, z )  +p,,(x, y, z ) )  which is continuous across the critical 
plane. This feature is an exact parallel to the occurrence of a shadow boundary in the 
two-dimensional Sommerfeld diffraction problem of scattering by an edge (see Jones 
1986), but the detailed mathematics will not be presented here. We also note that 
(43) becomes invalid in the Mach wave direction, cos6' = 0, since in the limit 6'+& 
the stationary phase point approaches infinity and the method of stationary phase 
breaks down. In the limit x + O  (i.e. as the quarter-plane surface is approached), 
p,,(x, y, z )  approaches a finite non-zero value, corresponding to the component of the 
surface pressure distribution resulting from the gust-corner interaction. 

In summary we therefore see that, downstream of 6 ' = $ c ,  the radiated field 



Unsteady transonic flow past a quarter-plane 397 

comprises two components, which must be added to find the total pressure p ( x ,  y ,  z )  
around the quarter-plane. First, there is the two-dimensional field p2d(x, y, z) ,  which 
is non-zero in the range y > x tan A / W ,  and arises from the interaction between the 
gust and the semi-infinite leading edge; in fact, for a realistic wing with a finite span, 
p2,(x,y,z) would not be present in this form. The role of the blade corner in 
determining p2,(x, y, z )  is merely in fixing the position of the critical plane across 
WhiChp,,(X, y ,  z )  is cut on, but otherwise hasno bearing on the magnitude ofp,,(x, y ,  z ) .  
Second, we have the fully three-dimensional field p,,(x, y ,  z ) ,  which is non-zero 
throughout the region 0 < 8 < in, and arises as a result of the presence of the corner. 
In this paper we are primarily interested in the effects of the corner in the conversion 
of incident vortical energy into acoustic energy, and since this process is described 
purely by p3,(x, y ,  z ) ,  it will be the acoustic intensity associated solely with this term 
which will give a measure of the energy scattered by the corner ; this quantity will 
be calculated later. 

We might have expected that in our quarter-plane problem the existence of a Mach 
surface in the flow would depend on the value of the free-stream Mach number, M ;  
if M < 1 then no such surface would be present (since the governing equations would 
then be elliptic) and the solution for the scattered potential would be non-zero 
through all space; whilst for M 2 1 a Mach surface would be present, at  an angle of 
inclination of less than or equal to in to the flow direction (with equality in the 
M = 1 case), and that upstream of this surface the solution would vanish. However, 
since the transonic similarity law (equation (5)) states that solutions of (4) for M $r 
1 in the transonic range are related to the M = 1 solution essentially by rescaling the 
y- and z-coordinates (which of course has no effect on the existence or position of the 
Mach surface), we note that our solution for $(x, y ,  z )  possesses a Mach surface with 
inclination in for each value of M in the transonic range (i.e. for values of M greater 
than and less than unity). This feature of our solution does not in fact contradict the 
above arguments, however, since the expression we have derived for $(x, y, z )  is only 
the leading term in a series expansion of the exact unsteady potential, the higher- 
order terms of which are at  least O(1 -M) smaller than this first term (equation 
(4) R). ForM < 1 this means that, since our first term is zero for x < 0, the exact field 
upstream of the corner must be given purely by these undetermined higher-order 
terms ; the total upstream scattered field is therefore at  least O( 1 -M)  smaller than 
the downstream part of the first term found in this paper. This is exactly as might 
be expected, since for high subsonic Mach numbers only a small amount of upstream 
influence is possible, and would vanish in the limit M-+ 1 -. For M > 1 in the 
transonic regime our analysis predicts that the orientation of the Mach surface is 
modified from its M = 1 value by only a small amount, and that this modification 
must again be accounted for purely by the undetermined higher-order terms. The 
expressions for the unsteady potential developed in this paper are therefore a good 
first approximation throughout the fluid, and for each M in our transonic range. 

In assessing the effect of the gust-corner interaction on the radiation in this 
rectilinear-motion problem it is useful to consider the transport of energy to the far 
field, and in particular to calculate the acoustic intensity, I .  We follow Goldstein 
(1976), who defines the intensity vector corresponding to some perturbation to a 
uniform mean flow as 

I =  -+ u-u ’  (pou ‘+p ’u ) ,  t: 1 (44) 

where U and po are the uniform undisturbed velocity and density, and u‘, p’ and p’ 
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are the perturbation velocity, pressure and density respectively. Since we are only 
interested in the effects of the presence of the corner and side edge on the interaction, 
we shall consider the acoustic intensity due solely to the three-dimensional field 
p3,(x, y, z) .  Moreover, we calculate only the radial component of I (denoted I , ) ,  since 
this is what is required in determining the total integrated energy flux (i.e. the energy 
flux integrated over a large sphere centred at  the origin) in our blade-fixed reference 
frame. We therefore have from (44) that (in non-dimensionalized units) 

I ,  = - iQ$3d (% +W cos op3d , 1 (45) 

and inserting the far-field expression for r$3d(x, y, z )  (which is easily derived in terms 
of p,,(x, y, z )  from (15)), we find that 

where the overbar denotes that the intensity has been time-averaged. For simplicity 
we consider k, = 0, in which case (46) reduces to 

Clearly, the total radiation intensity (i.e. the intensity obtained from substituting 
the sum of p2 ,  and p,,, and the corresponding velocities, into (44)) will include 
contributions from both the leading edge (two-dimensional) and corner (three- 
dimensional) fields individually, as well as a cross-term; the result given in (47) will 
of course agree with this total intensity in regions of space for which pzd(x, y, z )  = 0 
(so that from (42), equation (47) gives the total radiation intensity for observer 
positions satisfying y < xk,/(WQ)). We note, however, that the integral of the total 
energy intensity over a sphere at infinity does not converge (since p,,(x, y, z )  decays 
only cylindrically at infinity), essentially due to the presence of a semi-infinite 
leading edge in our model ; for this reason we restrict attention to our expression (47) 
for the intensity due solely to the three-dimensional field, which as already argued 
gives an indication of the level of the corner effects. 

Equation (47) can now be used to analyse the angular dependence of z, although 
we note that it will not be valid in the vicinity of the critical plane across which 
p2,(x, y, z )  is cut on (given our choice k, = 0 this plane corresponds to sin B cos x = 0, 
i.e. y = 0). If we fix 0 and 1x1 and vary x (that is, move on a single circular section 
of the cone with semi-vertical angle B and axis of symmetry aligned along the x-axis) 
we see that the variation in is given by the factor 

D ( x )  = tan2x/(1-cosx). (48) 

The quantity D ( x )  is plotted in figure 8 (our expansion of D ( x )  breaks down close to 
the critical plane, correspondingly to x = in and x = in) ; however, it can still be seen 
that the largest acoustic intensity from the corner interaction is beamed in directions 
directly above (and below) the blade, which is hardly surprising since the radiation 
is being generated by an unsteady force which acts normal to the blade. There is a 
null in I ,  in the direction x = IT, so that the gust-corner interaction has negligible 
effect in the region close to the plane z = 0 and outboard of the blade tip (i.e. for 
y < 0). Alternatively, I ,  has a minimum in the z = 0 plane inboard of the tip (i.e. for 
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FIGURE 8. A plot of the quantity D ( x )  against x. 

y > 0 )  ; this minimum is non-zero because the rigid quarter-plane supports a non-zero 
surface pressure. The variation of 6 with 8 and M is determined by the factor 

(1 +w) cos 8 
M4( 1 +W tan2 8) sin2 8 ’ E(8 ,M)  = (49) 

and this time our expansion of E(8 ,M)  is invalid in the vicinity of 8 = 0 (i.e. close to 
the x-axis). The most significant point to note from (49), however, is that the non- 
uniformity along the Mach surface (8 = in), which was present in our expression for 
p,,(x, y ,  z )  due to the proximity of the wave front, has been removed, and indeed that 
&+ 0 as 8+$. This is exactly as one might expect, since all the acoustic energy will 
be convected downstream by the transonic mean flow, so that the intensity measured 
by an observer fixed directly above or below the corner is zero. It can also be seen 
from (49) that I ,  is a decreasing function ofM, for any 8, and therefore that the total 
energy generated purely by the gust-corner interaction and subsequently reaching 
the far field in the form of acoustic radiation must also decrease as M is increased 
within the transonic range. Finally, we note from (47) that ~ K S Z - ~ ,  so that the 
energy radiated from the gust-corner interaction must decrease as the reduced 
frequency is increased. These deductions that the strength of the gust-corner 
interaction decreases with increasingM and SZ are fully in agreement with the trends 
determined by consideration of the lift distribution in $54, 5. 

7. Strip-theory approximation 
A common practical technique in estimating the radiation generated by unsteady 

gust loading on a wing is the use of a strip-theory approximation, whereby the wing 
is divided into thin (effectively two-dimensional) strips aligned parallel to the mean 
flow direction. The lift distribution on each strip is then approximated by supposing 
that it is exactly equal to that found on a wing of infinite span, thereby neglecting 
the influence of the wing tip on the surface pressure. The noise can then be estimated 
by the use of standard radiation integrals. 
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Although in practice one would be seeking to apply the strip-theory method in 
complicated situations (perhaps including blade thickness, finite chord or non-zero 
incidence effects), the simple quarter-plane problem discussed in this paper can be 
used as a bench-mark test; following Cargill (1987), all that needs to be done is to 
compare the approximate prediction of the quarter-plane radiation made using strip 
theory with the exact results found in $6. The strip-theory approximation is that the 
lift distribution on our semi-infinite wing is given by (A 4) for y 2 0, and is equal to 
zero for y < 0 (i.e. the surface pressure on our quarter plane is supposed equal to that 
on an infinite-span wing). The Fourier transform of this approximation to the surface 
pressure is denoted by Pst(k,, k,, 0) ,  and it can be shown that it is related to the exact 
result found earlier (see (13)) by 

as is done by Cargill (1987). Evaluation of the far-field form of the pressure predicted 
by strip theory follows from the method of stationary phase in exactly the same way 
as described in $6;  the two-dimensional part of the pressure, arising from the pole 
contribution from k, = k,, is precisely as before (since the right-hand side of (50) is 
unity when k, = k,) ; whilst the stationary phase contribution is equal to the exact 
result (43) multiplied by the factor 

In  order for the strip theory to yield a good approximation for the noise, we require 
that the factor given in (51) be close to unity, and therefore that both 8 and x be close 
to &. Hence, we see that for our quarter-plane problem the strip-theory approach 
will only yield an accurate result for observer positions lying close to the z-axis (i.e. 
directly above or below the corner). Away from the z-axis there is an error in the 
directivity, the magnitude of which becomes particularly large close to the plane on 
which the denominator of (51) vanishes. Thus, whilst the strip theory does not 
produce an accurate prediction of the radiation in this problem over most of the 
angular range, we see that the resulting strip-theory approximation can easily be 
modified by inclusion of the simple multiplicative factor given in (51). There is 
therefore the possibility of using this factor as a tip correction coeflcient in a practical 
wing-loading noise prediction scheme ; features such as finite chord, thickness or 
mean loading would be accounted for in the lift distribution using strip theory, and, 
as a first approximation, the resulting radiation corrected to account for the presence 
of the wing tip by inclusion of our simple factor. 

8. Concluding remarks 
In this paper the unsteady interaction between a harmonic velocity gust and a 

quarter-plane in transonic flow has been investigated, and application of a transonic 
similarity law has allowed us to derive a solution which is correct to leading order in 
the small parameter (1 -M).  The nature of the singularity in the lift distribution at 
the blade corner was analysed, and it was shown that, unusually, the strength of the 
singularity depended crucially on the path along which the corner was approached. 
The detailed lift distribution in a strip of width O(Q)-' about the leading edge was 
found, and was seen to be divided into two regions - one in which the leading-edge 
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inverse-square-root singularity dominates, and the other in which the transition is 
made between this singularity and the zero value in the lift at  the side edge. In terms 
of propfan noise prediction, the quantity of most practical interest is the acoustically 
weighted lift, and an exact algebraic expression for this in our quarter-plane problem 
was derived, and was seen to be equal to the equivalent result for a realistic finite- 
chord blade in the asymptotic limit of large blade number. This analysis yielded a 
simple algebraic factor, which could easily be included in prediction schemes in order 
to correct for the effects of the rear-row blade tips on the interaction noise. 

In addition to consideration of the lift distribution, the radiation in the quarter- 
plane problem was also discussed. Far from the corner the scattered field was seen to 
be composed of two components; one (two-dimensional) term arising from the 
interaction between the gust and the semi-infinite blade leading edge; and a second 
(genuinely three-dimensional) term corresponding to the interaction of the gust with 
the corner and side edge. It was this second term which was of greater interest, since 
it represented the effect of the gust-corner interaction at  infinity, and expressions for 
the directivity and scaling of the acoustic intensity were derived. The accuracy of the 
strip-theory approximation for radiation prediction in this simple model problem 
was also assessed. 

The advantage of the approach described in this paper over a numerical integration 
of the governing equations has been that closed-form algebraic expressions for 
various significant quantities have been derived, in the practically important 
transonic flow regime. The analysis has yielded physical insight into the structure of 
the scattered field and the nature of unsteady corner interactions, and has provided 
approximate formulae and scaling laws which should be of practical interest. 

The author is particularly grateful to A. M. Cargill for suggesting this problem, 
and for the financial support provided by Emmanuel College, Cambridge. 

Appendix A 
In this appendix we present the results for the lift distribution and radiation 

generated by the interaction between the harmonic gust and the infinite-span blade 
{z > 0, - GO < y < GO, z = 0) ; recall that the semi-infinite blade, or quarter-plane, 
considered in this paper occupies the quadrant {z > 0, 0 < y < co, z = O}. The 
analysis proceeds in much the same way as before; since the problem is essentially 
two-dimensional in nature, the transverse, y, dependence of the scattered potential 
must be equal to that of the incident gust, so that the scattered potential is written 
in the form $(x, y) exp ( - iky y - ~ y )  exp (iS2t). Substituting this into the small- 
disturbance equation (4) yields 

$,,-2iM2S2$,+(M2522-(~y-i~)2)$ = 0, (A 1 )  

and $(x, z )  is in addition subject to the boundary conditions 

$,(z, 0) + Vexp ( -iS2x) = 0 for z > 0 

and $(x,O) = 0 for x < 0. 

Defining the one-dimensional Fourier transform 

?P(k, z )  = l-: exp (ikx) @(x, z )  dz, 
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we find by application of the Wiener-Hopf technique (this time with respect to the 
k transform variable), that the Fourier transform of the pressure jump across the 
blade is given by 

where y(E) = [2M252E-WQ2+ (k,-ie)2]i, 

and the branch cut is chosen to lie between the branch point and infinity in the lower 
half of the k-plane. The pressure jump (denoted [pZd(x, y, O ) ] ? )  can be recovered by 
inverting (A 3),  and by deforming the contour round the branch cut we find 

[P(k,0)1' = -2V/Y(k), (A 3) 

It follows from (A 3) that the acoustically weighted lift, gd(y ,K) ,  is given by 

Now considering the radiation we have that the pressure (denoted by pZd(x, y, 2)) is 
given by 

where the integration contour lies along the real k-axis, indented above the branch 
point a t  k = (WQ2 - ki)/2M2Q. Deforming the contour onto a path round the branch 
cut leads to the exact result for the pressure 

which is valid through all space, and in particular in the far field. It can easily be 
checked that (A 4),  (A 5) and (A 7 )  scale on M in accordance with the transonic 
similarity law ( 5 ) .  

Appendix B 
In this appendix we outline how the results for the acoustically weighted lift per 

unit span obtained in $5  can be used in predicting either the tip-vortex or the wake 
interaction noise generated by a counter-rotation propeller. For both noise sources 
the disturbance shed by the front row, which is then incident on the rear row, can 
be decomposed into its Fourier components, each corresponding to a harmonic 
velocity gust of the kind considered in this paper. Working in a frame in which the 
rear row is fixed, the n,th harmonic of the incident disturbance has reduced 
frequency 

52 = 2n,BMtc/(MrD), (B 1 )  

where B is the blade number (assumed the same for each row), Mt is the rotational 
Mach number of the blade tips (again assumed equal in magnitude for the two rows), 
c is the local chord length of the second-row blades and D is the propeller diameter ; 
full details are given in Parry & Crighton (19894. The reduced frequency is therefore 
a function of propeller radius. If we consider the n,th harmonic component of the 
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radiation produced by the interaction between this n,th harmonic and the rear row, 
then the first step in estimating the noise is the calculation of a chordwise non- 
compactness factor, defined by 

at  each radial station along a given blade in the second row; x and y are the 
coordinates considered earlier (in the notation of this paper y now corresponds to the 
coordinate along the propeller radius), b ( x ,  y ,  O ) ] ?  is the unsteady lift distribution 
due to the interaction with the harmonic gust (which, unlike the lift distribution 
calculated in this paper, is that of a finite chord blade), and the integration in (B 2 )  
is along the blade chord running from 0 a t  the leading edge to 1 at the trailing edge. 
The wavenumber K accounts for the retarded time differences along the blade chord ; 
we have 

where M ,  is the translational (flight) Mach number of the propeller, M ,  is the local 
helical Mach number of the blade section being considered, and 6 is the angle 
between the observer-propeller vector and the flight direction. In modern propeller 
systems the blade number B is large, allowing the application of asymptotic analysis 
in the limit B +  co (see Parry & Crighton 1989a, b ;  Peake & Crighton 1991 for full 
details), and from (B 3) we therefore see that Y ( y , K )  can be approximated 
asymptotically in the limit K - t  co (for certain special-case values of the parameters 
n,, n,,M, and cos6 it might be that K x 0 even for large B ,  but this will not be 
considered here). In this limit, Y ( y , K )  will be dominated by contributions from the 
leading edge (i.e. from the vicinity of the singularity in the lift distribution at 
x = 0 ) ,  and we can therefore replace the upper limit of the integral in (B 2) by infinity. 
Moreover, since the effects of the trailing edge will be insignificant in this limit, we 
can substitute into (B 2 )  the values of @(x, y ,  O ) ] ?  for the quarter-plane, and therefore 
have that in the large-blade-number limit 

Y ( y , K )  - -qy ,K);  

a closed-form algebraic expression for 9 ( y , K )  has already been given in $5.  
Once the chordwise non-compactness factor has been determined along the rear- 

row blade, the noise of a single interaction tone can be evaluated by integrating 
Y( y ,  K )  along the blade span, with inclusion of an appropriate Bessel function factor to 
account for the radial phasing (see Parry & Crighton 1989a). The fact that the theory 
developed in this paper (and hence our expression for Y ( y , K ) )  is only valid for 
transonic flow speeds, and therefore cannot be valid along the whole blade radius, is 
of little significance. In typical modern systems operating at  cruise, the blade tips 
certainly move in the transonic regime ; in the case of the bladevortex interaction 
noise, the portion of the rear-row blades inboard of the tip is not important anyway; 
whilst for the wake interaction noise, a theory already exists for predicting the blade 
response away from the tips, and our results would be used to take account of the tip 
region. 
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